Differentiation and dynamic analysis of primitive vessels from embryonic stem cells.
نویسندگان
چکیده
Embryonic stem (ES) cells, which are derived from developing mouse blastocysts, have the ability to differentiate into various cell types in vitro. When placed in basal medium with added serum, mouse ES cells undergo a programmed differentiation favoring formation of cell types that are found in the embryonic yolk sac, including vascular endothelial cells. These in vitro differentiated endothelial cells form primitive blood vessels, analogous to the first vessels that form in the embryo and the yolk sac. This differentiation model is ideal for both genetic and pharmacological manipulation of early vascular development. We have made mouse ES cell lines that express endothelial-specific GFP or H2B-GFP and used these lines to study the processes of mammalian vessel development by real-time imaging. Here we describe protocols for making transgenic ES cells and imaging the processes of blood vessel development. We also provide methods for ES cell maintenance and differentiation, and methods for analysis of vascular marker expression.
منابع مشابه
Differentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell
Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...
متن کاملThe Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells
Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in molecular biology
دوره 482 شماره
صفحات -
تاریخ انتشار 2009